
HOME  PLATFORMS  TAREME PLATFORM

Website

Co-funded by the AAL

program

Criteria for open

platform in AHA and

AAL domains which

TAREME complies with:

Open Source

Open Standards Based

Shared Common

Information Model

Federatable

Vendor Technology

Neutral

Supports Open Data

Open APIs

Open Usage





AHA Experts' Voices: Dr. Fabio Paternò on the implAHA Experts' Voices: Dr. Fabio Paternò on the impl……

Business Overview

TAREME (Trigger-Action Rule Editing, Monitoring, Executing)

platform provides support for executing and analysing

personalized automations in Internet of Things scenarios.

The platform allows the creation and execution of trigger-

action personalization rules that can change the state of

connected smart objects and devices, send alarms or

reminders, and modify applications’ state depending on

contextual events. The execution of rules is supported by a

middleware infrastructure able to manage and detect when

contextual triggers generated by available sensors and

devices are verified. Analytics is supported through a tool

providing information about the personalization rules

executed in users’ contexts, which can help in better

understanding their actual use and personalization

preferences.

The personalization platform is not domain-dependent and

can be applied to different types of scenarios. This platform

also includes also a Tailoring Environment that enables end-

users to specify expressive trigger-action rules with various

possible compositions of triggers and actions and with a

clear distinction between events and conditions defining

triggers, in a way that is understandable by end-users.

Business Overview

Technical

Overview

Contextual

Overview

Field Trials

https://www.platformuptake.eu/
https://www.platformuptake.eu/platforms/
https://www.platformuptake.eu/
http://www.aal-petal.eu/
http://www.aal-europe.eu/projects/petal/
mailto:fabio.paterno@isti.cnr.it
https://www.youtube.com/watch?v=hC9jczh6Wcs


Target Scenario: Ambient Assisted Living

Remote monitoring: Remote monitoring services and

health related interventions are strongly personalized to

specific individuals’ requirements, preferences, abilities and

motivations, which can radically differ among the older

persons, and even dynamically evolve over time for the

same person depending on changing user needs and

context-dependent conditions.

Establishment of rule: A caregiver (or even an older adult)

can set up a rule that better monitors what the older adults

do during the night, or whether their expected physical

and/or cognitive exercises are performed during the day.

A rule can switch on a light for a specific interval of time so

that the bedroom-bathroom path can be better illuminated

when motion is detected during the night. Another example

is a rule that changes the light’s colour according to the

current user’s emotional status since lights can play an

important role in the older adult’s mood.

Remote analysis: In addition, in such contexts, caregivers

can benefit from a rule monitoring tool that allows them to

understand which kind of rules have been triggered in a

specific period, to better understand the automations that

have more frequently executed during the older adults’ daily

life. For instance, high use of reminders can be interpreted

as a sign that the older adult is increasingly relying on

external support to remind the various activities to carry

out, which might need further investigation in some cases.

Target Scenario: Smart Home

Customized automation: Great variety of activities occur in

the domestic environment and people’s interactions with

the devices and objects available in the household. This

emphasizes on the need to support the easy customization

and personalization by end users. An example of

customized automation is creating a rule that notifies

parents when children are back home from school and

activates the external surveillance system in the house.

Another rule could check gas leaks in the kitchen, and in

such case, an alarm can be directed to alert inhabitants

currently at home (as well as other people that can provide

help), and at the same time activates the automatic opening

of the kitchen’s windows. In this case, a rule monitoring tool

can be useful to better understand the kinds of automations

that the family members are most interested in, i.e. whether

they regard controlling the equipment at home, or whether

they involve triggers more related to inhabitants’ safety (e.g.

presence of smoke or gas) or health (heart rate, time spent

in the bathroom).

Learn more about TAREME Platform

https://tare.isti.cnr.it/RuleEditor/login#page-top


Technical Overview

Platform’s architecture

The architecture of the considered software platform

includes a Tailoring Environment through which even people

without programming background (e.g. domain experts, end

users) can specify the desired personalization rules. The

Tailoring Environment sends such rules to a Rule Manager,

which receives information from the Context Manager when

the triggers involved in the rules are verified: when this

happens, the Rule Manager sends the actions that should be

executed by target applications and appliances.

The Context Manager is a software composed of one server

and various delegates. The purpose of the Context

Delegates is to communicate directly with the various

sensors or other entities able to generate events and be

informed when their associated variables change. When this

happens, the Context Delegates communicate such changes

to the Context Server, according to a pre-defined vocabulary

used to specify the triggers.

There is also a Monitoring module which aims to provide

support for analysing the use of the personalization

platform, by showing relevant information to users

interested in it (e.g. in Ambient Assisted Living scenarios

they can be caregivers or platform managers). For gathering

the relevant information, the Monitoring module receives

data from the Rule Manager concerning the rules, their state

and when they have been executed. This module is a key

added value because it allows relevant stakeholders to focus

on the personalization that has actually been put in place by

users, thereby of actual interest for them. Applications can

be integrated with the platform in order to: receive actions

(which were included in relevant rules) indicating requests

of modifications to make, and/or send events generated by

the application itself (in this case the application acts as a

Context Delegate, by sending the information associated

with the occurred event(s) to the Context Server).



An Overview of the Main Components of the Platform and Their Communications

The Tailoring Environment

The Tailoring Environment is the EUD environment through

which users specify personalization rules. On the one hand,

it shows relevant triggers, which describe the main aspects

that may change in the context, categorized under a

hierarchical representation having three main dimensions

(Users, Environments, Technology) at its highest level.

On the other hand, it also provides users with a structured

representation of actions, mainly depending on the specific

application(s) considered. The Tailoring Environment is

designed to be a generic environment which can be easily

configurable, making its customization to support specific

applications, domains and contexts an easy task.

The “Settings” Panel of the Tailoring Environment

https://www.platformuptake.eu/wp-content/uploads/2021/07/TAREME-PLA-01.png
https://www.platformuptake.eu/wp-content/uploads/2021/07/TAREME-PLA-02.png


“User id” specifies the name of the user who is currently

using the Tailoring Environment. This information is

important to correctly associate the rules created through

the Tailoring Environment with the correct user;

“Context Manager URL” specifies the URL of the specific

instance of the Context Server used. This information is

essential to identify the triggers that the Tailoring

Environment has to show, which depend on the considered

context;

“Rule Manager URL” specifies the URL of the Rule Manager.

This information is key to understand the URL to which to

send the verified rules for their execution.

“Application Set” specifies the name of the application(s)

considered. This information is important to identify the

actions that can be executed.

The Tailoring Environment also supports the explicit

distinction between events and conditions when specifying

the trigger. This distinction was introduced considering

previous user studies, which have shown that EUD

environments sometimes confuse end users concerning the

difference between these two concepts. Thus, by

introducing the explicit distinction, one can better stimulate

users in thinking about their difference. In addition, the top

part of the central panel of the Tailoring Environment

provides feedback in natural language of the created rule, to

express the specified behavior in a more immediately

understandable manner.

Moreover, it is possible to define rules that are triggered if

an event does not occur in a specific interval of time (e.g.

When the medicine has not been taken between 10 a.m.

and 11 a.m.), which were found useful in some scenarios.

This has been supported thanks to the introduction of the

NOT operator associated with an event in the proposed tool,

differently from other solutions that do not support it (e.g.

IFTTT). Another useful feature of the rule language used is

the possibility to define rules that are triggered when a

specific ordered sequence of events occurs (e.g. “If the user

enters inside a room and then he exits”; or “When the

temperature becomes more than 20 degrees and then the

humidity level becomes more than 50%”), or when an event

occurs a specified number of times (event iteration), e.g. “If

the user goes to the bathroom 5 times during the night”.



Distinguishing between Events and Conditions in the Tailoring Environment

Learn more about the Panel of the Tailoring Environment

The Context Manager

The main task of the Context Manager is to maintain an up-

to-date picture of the current situation of the considered

context of use (e.g. the house of a specific user), and to

inform the other modules of the platform -the Rule Manager

in the first place- when relevant updates to such a context

occur, i.e. when an event happens or a condition is fulfilled.

Therefore, the Context Server communicates with the Rule

Manager only when the triggers specified in a rule are

verified. The Context Manager is a distributed module,

composed of a Context Server and some Context Delegates.

The Context Delegates are software components that

communicate with the sensors and the appliances available

in the considered context: they get raw information and

send it, in a suitable format, to the Context Server, by using

a RESTful service that this module exposes to this aim. In

turn, the Context Server, according to the data received

from the Context Delegates, updates a database storing the

current and past values (historical data) of the attributes

that the various elements considered in the concerned

context dynamically assume over time, and represented

using a common format.

More specifically, the description of the types that such

contextual entities can assume, and the hierarchical

structure in which they are organised are represented in a

context meta-model specified in an XSD format. When the

Context Server is compiled, this XSD file is automatically

translated into a set of Java classes, and various instances of

Java objects are created to define the state of the elements

composing the current context (e.g. the various instances of

users, environment and technologies). In order to update

such Java objects, the Context Server provides just one

RESTful service to receive the data from the various Context

Delegates which, using this REST service will be able to

update the various attributes of the context. The input

https://www.platformuptake.eu/wp-content/uploads/2021/07/TAREME-PLA-03.png
http://giove.isti.cnr.it/AssetsSitoLab/publications/JAIHC%20-last.pdf


parameters of this service aimed to update the information

received from the Context Delegates are: i) the id of the

corresponding context dimension; ii) the xPath value

indicating where the context attribute to update is located

within the context model structure; iii) the new value

gathered from the sensor.

For example, the trigger representing the event “user has

fallen” is defined in the context model as an attribute of the

“User” dimension called “layingDown”, and it assumes a

Boolean value: this trigger is defined under the following

hierarchy: “user -> physical -> laying down”. To update the

layingDown attribute, the context delegate sends three

parameters to the REST service: the user id, the xPath of the

attribute to update (in this case “user / physical / @

layingDown”) and the current value of the attribute (in this

case “true”). The advantage of this single-service solution is

in terms of platform evolvability. Indeed, when there is the

need of updating the context meta-model (because of a new

context element type, or an existing context element type

has been changed, or removed), it is sufficient to modify the

XSD definition of the context metamodel, since the REST

service above mentioned can still be used without requiring

any further changes.

This is because: i) the JAVA classes that are expected to

manage the values of the attributes of the updated context

are automatically generated when compiling the Context

Server; ii) the above-mentioned RESTful service will still be

able to support changing the values received for the newly

generated context element(s). For instance, suppose that

there is the need to introduce a new attribute providing

information about user movements (i.e. “isMoving”), and this

attribute needs to be added under the “user/physical” xPath

hierarchy (namely: “user / physical / @isMoving”). In this

case, while the XSD describing the structure of the context

needs to be modified, there is no need to create a new, ad-

hoc service to receive and update values of this newly

introduced attribute, because the RESTful service described

before can still be used to change the value of the

concerned “isMoving” attribute.

This is realised through the JAVA reflection mechanism

(namely: the capability of an executing Java program to

examine upon itself, i.e. obtain the names of all the fields or

methods of a JAVA class), which makes it possible to

automatically derive, within a Java program, the name of the

method to call (by using the information included in the

parameters mentioned above), and consequently update it.

This type of solution is modular and evolvable because it

can easily manage the flexible introduction of various sets of

sensors and applications, according to the specific needs to

address, in a dynamic manner.

The Monitoring Tool



The main goal of this module is to provide its users with

information about what happens in the end-user context

(e.g. seniors’ homes), both in terms of activities done by the

users (as detected by sensors), and in terms of

personalizations that have been put in place through the

specified rules. To this aim, this module receives input from

the Rule Manager, specifically the personalization rules that

have been sent for execution, and the time when they have

been actually triggered.

The information about triggered rules can represent

valuable data to understand what is currently and actually

going on in one or more end-user sites, to identify the

personalization aspects which users are focusing on most,

the types of routines they have put in place and the

frequency with which such automations occur.

Indeed, users of the Tailoring Environment could create/add

several rules in their repositories over time. Thus, some

rules may appear in the repository, but they are not

currently exploited because the users did not want to have

them active at the time. In general, the information about

the triggered or active rules provides data that have been of

actual interest for their users. The monitoring tool can also

provide more detailed information, such as how many times

a specific rule has been triggered.

This value is highly dependent on the purpose of each

particular rule. In the following, we will better detail the

information provided by the Monitoring Tool, which displays

various types of structured information. Therefore, to

facilitate its description, the project team schematized its

layout as structured into four main parts. The content of

such four parts are further detailed in the following four

sections.

Learn more about the layout of the Monitoring Tool and the

platform configuration

Contextual Overview

This section provides background information to better

introduce the context of the research which was carried to

support the development of the platform. The design of the

platform goes back to the concept of an automatic

environment for specifying personalization activities in IoT

scenarios through trigger-action rules. That environment

just allowed end users to create, modify, save, delete and

reuse trigger-action rules. Such initial architecture, over the

http://giove.isti.cnr.it/AssetsSitoLab/publications/JAIHC%20-last.pdf


years, significantly evolved from a first ideation to a

concretely working solution supporting the actual execution

of the actions contained in rules, and even providing

‘smarter’ support in some specific cases. According to the

evolution of the platform, also the included environment for

managing rules significantly improved.

Despite some promising results derived from usability

studies involving EUD tools, it became soon clear that even

providing users with usable EUD tools, without proper

support, they may easily define rules triggering actions that

are in conflict, or not resulting in the intended behaviour.

Therefore, the developed solution supports end-user

debugging the simulation of the context in which trigger-

action rules are expected to be executed. In particular, the

platform supports functionalities not only for simulating

rules but also for ‘debugging’ them by providing conflict

resolution support as well as interactive explanations.

Considering the increasing availability of humanoid robots

in various domains of everyday life the platform enables

those who are not programming experts to personalize

robot behaviour according to contextual information

detected by both the robot and the available IoT objects and

sensors available in a specific context, and in this way to link

the robot behaviour to what happens around it.

Learn more about the TAREME platform

Field Trials

A female, 66 years old, living alone.

An 85-year-old widow who experiences

episodes of memory loss, spatial

disorientation, and falls.

https://tare.isti.cnr.it/RuleEditor/login#page-top
https://www.platformuptake.eu/wp-content/uploads/2021/07/Remote-Monitoring-of-End-User-Created-Automations-in-Field-Trials.pdf#page=27
https://www.platformuptake.eu/wp-content/uploads/2021/07/Remote-Monitoring-of-End-User-Created-Automations-in-Field-Trials.pdf#page=26


A male, aged 81, who was quite

autonomous in the management of his.

An 83-year-old widower who had diabetes,

walked with difficulty and took several

medicines

An 78-year-old widow, living alone.

An 80-year-old widow, who suffered from

heart rate alterations.

© 2022 - PlatformUptake.eu. All Rights Reserved. Terms & Conditions

https://www.platformuptake.eu/wp-content/uploads/2021/07/Remote-Monitoring-of-End-User-Created-Automations-in-Field-Trials.pdf#page=28
https://www.platformuptake.eu/wp-content/uploads/2021/07/Remote-Monitoring-of-End-User-Created-Automations-in-Field-Trials.pdf#page=28
https://www.platformuptake.eu/wp-content/uploads/2021/07/Remote-Monitoring-of-End-User-Created-Automations-in-Field-Trials.pdf#page=28
https://www.platformuptake.eu/wp-content/uploads/2021/07/Remote-Monitoring-of-End-User-Created-Automations-in-Field-Trials.pdf#page=28
https://www.platformuptake.eu/terms-conditions/

